www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 智能硬件 > 人工智能AI
[導讀] 通向AGI(通用人工智能)的道路上,始終有一道巨大的鴻溝橫亙在研究者的面前,那就是人工智能對于因果關(guān)系的理解。因果關(guān)系的推斷,首先對于人類本身就是一個極為復雜的問題。無論是必然性推理還是或然性推

通向AGI(通用人工智能)的道路上,始終有一道巨大的鴻溝橫亙在研究者的面前,那就是人工智能對于因果關(guān)系的理解。因果關(guān)系的推斷,首先對于人類本身就是一個極為復雜的問題。無論是必然性推理還是或然性推理,人類總能在復雜的事物關(guān)系中建立精妙地因果推論。且無論對錯,這種能力都讓人類能力超群,成為站在生物鏈頂端的那顆孤星。

想象一下,假如你帶著女兒去參加一個夏令營,在那里你遇到一個成年女人帶著一個小女孩。你很可能會斷定那個女人是小女孩的母親。過了幾個星期,你又在你住的附近的一家咖啡店里,你再次看到這個小女孩,但這次她是由一個成年男人帶著?;谶@兩段觀察到的事實,你基本可以推斷,這個男人和女人有一定的關(guān)系。但是否是夫妻關(guān)系或者別的關(guān)系,就會涉及到更多信息,諸如男人和女人的年齡、衣著品味和小孩子的親密程度等等信息。

在這一場景中,我們可以基于在較大跨度的時間、地點中的發(fā)生的事實關(guān)系進行相關(guān)的因果推論。我們把這種在復雜的事物關(guān)系中的這種推論稱為“長距離推理”。

AI能否掌握這一能力?對于目前熟知的一些AI技術(shù),通過數(shù)據(jù)庫對他們進行人臉識別很容易;如果再給定他們相關(guān)身份的知識圖譜,AI也可以認出他們。但如果僅給出以上事實場景(對于AI來說是單獨的圖像),而不提供任何其他信息,AI能否從圖像描述的事實中建立起因果推理么?

這一次,DeepMind的最新研究中為AI進行 “長距離推理”提出了一種解決方案。近日,DeepMind公開發(fā)表了一篇為ICLR 2020會議提交的論文《MEMO:一種用于情景記憶靈活組合的深度網(wǎng)絡》。論文主要提出了一種可以增強現(xiàn)有深度神經(jīng)網(wǎng)絡架構(gòu)的推理能力的新架構(gòu)——MEMO。MEMO具有長距離推理的能力,即能夠發(fā)現(xiàn)在記憶中的多個事實之間的長距離的關(guān)系。

那么MEMO的實際表現(xiàn)如何?MEMO這一新的深度神經(jīng)網(wǎng)絡對于AI發(fā)展的意義是什么?這些問題仍然需要我們思考和解答。

為什么長距離推理如此重要?

為了討論長距離推理的重要性,首先我們需要知道感知、記憶、命名、事實、判斷以及推理、行動的內(nèi)涵和關(guān)系。歷史學家尤瓦爾·赫拉利在《人類簡史》中提到的“人的虛構(gòu)能力”也就是“人可以想象不存在事物的能力”成為智人戰(zhàn)勝其他物種的決定因素。但他仍然把復雜問題的解釋簡單化了。

只要你認真審視自己的日活生活,我們幾乎都在按照上述認知能力在思考和行動。我們通過感官認知外界形成感知,這時只是一些時空中的感性要素;然后由我們大腦區(qū)分后對其中特別注意的要素(其他大量信息淪為認識的背景)進行命名,從而形成一個事實;再通過大腦的聯(lián)接能力,把命名通過邏輯詞連接起來形成判斷;然后,通過過去經(jīng)驗的總結(jié)和對未來的想象,我們形成相應的推理,最后據(jù)此形成計劃和實施步驟,最后形成行動。當然,這一系列過程都幾乎發(fā)生在認知的短暫瞬間,以致于很多人忽視認知的復雜性。

我們可以舉一個形象的例子。就在寫作此文的同時,筆者的二歲半的女兒已經(jīng)在客廳拿著塑料的噴壺和鏟子對著空氣做出舀水、噴水的動作,同時還喊出“水、濕了、擦擦”的單詞。兩歲半的女兒就如同人類的童年時代,她學會觀察和區(qū)分了身邊的物品,然后又學會給不同的事物命名(杯子、鞋、壺),然后又能理解事物之間的關(guān)系做出因果推斷(壺可以用來盛水、鏟子可以用來搬運東西);并且最厲害的是,她還能虛構(gòu)眼前不存在的事物,就如同孩子在想象用鏟子給噴壺舀“水”,又把“水”從噴壺里倒了出來,弄“濕了”地面或者她的鞋子。甚至于她還能“條件反射”地想起大人們曾反復強調(diào)“弄濕了東西要擦干凈”的訓誡,試圖去找東西來擦拭根本不存在的“水”。

如果說許多動物能夠制作和使用工具,而且使用起來比二歲小孩還熟練,但他們?nèi)匀粺o法完成人類小孩對于并未實際發(fā)生事情的想象的推理和計劃能力。這份獨屬于人類的天賦怎能不令我們驚奇和驕傲。

借用圖靈獎得主朱迪亞·珀爾在《為什么:關(guān)于因果關(guān)系的新科學》對于人的三種不同層級的認知能力的區(qū)分:觀察、行動和想象(seeing、doing、imagining),我們再深入探討下當前人工智能可以做哪些或者說還不能做哪些?

第一層是觀察能力,即觀察到事實A與事實B,隨后建立起事實A與事實B的判斷X,基于判斷X,會影響我們得出另外一個結(jié)論Y。比如哲學上經(jīng)典的三段論:我們觀察到一個人(事實A),人們都把他稱作蘇格拉底(事實B),我們得到“蘇格拉底是人”(判斷X);我們還掌握了一條顛撲不破的真理:凡人皆有一死(判斷Y);最后,我們得出:蘇格拉底會死(結(jié)論Z)。請不要小看這一能力,我們正是依靠強大的判斷能力形成經(jīng)驗,讓人類從嚴酷的自然選擇中獲得勝利。

第二層是干預能力,即實施干預X或Y,會造成怎樣的結(jié)果Z。以上例子繼續(xù)假設,如果我們對“蘇格拉底是人”進行干預,比如,當時的人們將蘇格拉底神圣化為像耶穌一樣的人物,即使他確實是喝下毒藥而身亡,但因為已經(jīng)“從人變成了神”,所以,我們就可以得出“蘇格拉底沒有死”的結(jié)論。這一假設看似荒誕,正是由于這些能力,我們可以進行育種、畜牧、開采,建立宗教、城邦和帝國組織等,人類文明短短幾百年對自然的干預已經(jīng)超過之前數(shù)百萬年的影響。

第三層是反事實的能力,涉及到人類的想象和反思能力。即如果判斷X或Y引起了結(jié)論Z,那么,如果X、Y沒有發(fā)生,那么結(jié)論Z也會變化。再假設,人類發(fā)明了時間機器且發(fā)明了長生不死的藥物,那我們回到古希臘雅典的監(jiān)獄,將毒藥換成了長生不死藥喂給了蘇格拉底,判斷Y被推翻,同樣改變了結(jié)論Z。正是這些更為夸張的想象,讓人類提出科學假說、建立像相對論、量子力學等等的知識系統(tǒng),進行文學藝術(shù)創(chuàng)造等非凡能力。

那么,目前人工智能處在模仿人類智能的哪個層級。如果你對人工智能有多少樂觀,那結(jié)論就會有多失望。目前即使是成果斐然的深度學習算法,仍然處在這三層認知能力的第一層,其智慧的難度跟貓頭鷹觀察老鼠出沒與否的能力不相上下。

盡管機器學習尤其是深度學習算法在比如圖像識別、語音識別、無人駕駛、棋牌游戲?qū)?zhàn)等眾多領域可以超過人類,但其模式仍然是“由一系列觀察結(jié)果驅(qū)動,致力于擬合出一個函數(shù)……深度神經(jīng)網(wǎng)絡只是為擬合函數(shù)的復雜性增加了更多的層次,但其擬合過程仍然由原始數(shù)據(jù)驅(qū)動……處于因果關(guān)系之梯的任何運行系統(tǒng)都不可避免地缺乏這種靈活性和適應性?!?/p>

這意味著,機器學習及深度神經(jīng)網(wǎng)絡的算法,只是利用對于輸入數(shù)據(jù)的相關(guān)性關(guān)系的擬合,而不理解因果關(guān)系,那么人工智能就不能從第一層認知上升到第二層級,無法回答有關(guān)干預的種種問題。

以上作為理解背景稍顯冗長。但MEMO所完成的長距離推理能力,在我們所述的三個認知層次上有了一個顯著性的位置。MEMO成為深度神經(jīng)網(wǎng)絡開始具備長距離因果推理能力的一次成功嘗試,也許可以視作人工智能從第一層級向第二層級的躍遷上搭建了一個更好的階梯。

MEMO算法的創(chuàng)新之處

首先,MEMO參考了神經(jīng)科學中的“聯(lián)想推理”的能力,他們從最新的對海馬體的研究中獲得了方法靈感。海馬體通過一種被稱為“模式分離”的過程中進行獨立地記憶儲存,以最大限度地減少記憶之間的干擾;同時最新的研究又指出,這些被獨立存儲記憶通過循環(huán)機制進行檢索以實現(xiàn)整合,從而支持眾多單個經(jīng)驗的靈活組合,以推斷其未曾觀察過的關(guān)系。最終由此而形成推理。

DeepMind 研究人員稱,他們正是從這一神經(jīng)科學模型的研究中獲得啟發(fā),來研究和增強機器學習模型中的推理能力。

MEMO 相較于之前的推理系統(tǒng),引入了兩個新的組件:第一它引入了存儲在外部記憶中的事實與構(gòu)成外部記憶中這些事實的項之間的分離;第二個它利用自適應檢索機制,在產(chǎn)生答案之前允許有一些可變數(shù)量的“記憶躍點”。

進一步解釋下。第一個組件:MEMO采取了基于EMN(End-to-End Memory Networks,端到端記憶網(wǎng)絡)的呈現(xiàn)外部記憶表征的基本結(jié)構(gòu),但其新結(jié)構(gòu)中加入了通過參照海馬體機制設計的新的任務PAI(Paired Associative Inference,聯(lián)想配對推理),它允許對記憶中的單個元素進行靈活的加權(quán),以增強推理的能力。

第二個組件:在運行中,還需要解決計算時間過長的問題。在標準的神經(jīng)網(wǎng)絡中,計算量是基于輸入的函數(shù)的大小而增長,而MEMO更希望讓計算時長跟任務的復雜度相關(guān)。為此,它從人類聯(lián)想記憶的模式中引入了一種被稱為“REMERGE(重現(xiàn))”的模型。在該模型中,從記憶中檢索到的內(nèi)容作為新的查詢被重新循環(huán),然后利用在重新循環(huán)過程中的不同時間步驟檢索到的內(nèi)容之間的差異來計算網(wǎng)絡是否適應在固定點上。MEMO可以采用一種“終止策略”,通過網(wǎng)絡輸出一個動作(在強化學習的意義上),表示它是否希望繼續(xù)計算和查詢其記憶,或者它是否能夠回答給定的任務。并在強化學習中引入一個新項——二進制停止隨機變量(the binary halTIng random variable),以最小化預期的計算步驟。

基于這兩個新組件的加入,MEMO在下面三個經(jīng)驗性結(jié)果的任務測試中取得顯著的優(yōu)勢成績,從而也證明了這兩個組件的有效性。

三組結(jié)果驗證:MEMO與另外兩種內(nèi)存增強架構(gòu):EMN和DNC(the DifferenTIal Neural Computer,微分神經(jīng)網(wǎng)絡)以及UT(Universal Transformer,普遍轉(zhuǎn)換器,bAbI任務套件中的最新模型)進行了比較。

1、關(guān)于聯(lián)想配對推理:在較小集合的推理查詢上,MEMO可以和DNC一樣達到最高的準確度,而EMN即使有4或10跳,也不能達到相同的準確度,而且UT也不能準確地解決這個推理測試。而對于較長的序列結(jié)合(即下面的長度4和5),MEMO是唯一成功地回答最復雜推理查詢的架構(gòu)。

2、對于隨機生成圖形的最短路徑的測試:表 2 顯示與查找最短的兩個節(jié)點之間的路徑。在只有10個Nodes的短路徑上,DNC、UT和MEMO具有完美的預測時中間最短路徑節(jié)點的準確性。在20個Nodes的長路徑上,MEMO 在具有高度連通性的更復雜的圖形中優(yōu)于 DNC,在最短路徑中預測兩個節(jié)點時,效果更超過 20%。

3、關(guān)于BABI任務的問答測試上:在10k訓練集中,將 MEMO 與兩個基準模型以及UT模型進行了比較,結(jié)果顯示,MEMO唯一能夠在較長的序列上成功回答最復雜的推理查詢的體系結(jié)構(gòu)。

顯然,MEMO在基于記憶表征的長距離推理的改進非常明顯,而其創(chuàng)新之處在于它采用了神經(jīng)科學所應用于測試推理的聯(lián)想配對推理方法的新型結(jié)構(gòu)。這也從反面證實了神經(jīng)科學中關(guān)于記憶推理的假設:記憶中事實元素的分離儲存與強大的注意力機制組合,在通過對記憶存儲中的單個元素的靈活組合來實現(xiàn)推理。

MEMO:通往AGI的正途?

從一開始,AGI就是DeepMind誕生之初的目標。DeepMind創(chuàng)始人德米斯·哈薩比斯很早就采用了神經(jīng)科學的方法來研究AGI。

早在2010年8月,DeepMind創(chuàng)立前的三個月,哈薩比斯經(jīng)在當年的奇點峰會上發(fā)表了一個題為“一種通過系統(tǒng)神經(jīng)科學方法構(gòu)建AGI” (A Systems Neurosciences Approach To Building AGI)的演講。

在演講中,他回應了之前兩種接近AGI的方向:一是通過象征性AI,即通過描述和編程體系來構(gòu)造人類大腦的思考體系,其失敗之處就是操作難度太大,難以真實描述大腦的結(jié)構(gòu)。二是通過數(shù)字形式復制大腦的物理網(wǎng)絡結(jié)構(gòu),這一方法很有意義,但這一任務重點放在還原大腦的物理功能卻不能解釋人類智慧的運行規(guī)則。

經(jīng)過比較,哈薩比斯采取了折中路線:AGI應該從大腦處理信息的宏觀方法中得到啟發(fā),而不是從其物理結(jié)構(gòu)或者說大腦的特定腦區(qū)功能去尋找方法。簡言之,AGI應專注于理解人腦的軟件功能,而非硬件功能。通過磁共振成像(FMRI)等新技術(shù),使得人們可以觀察人類各種思維活動時大腦內(nèi)部的活動,從而可以理解其運作機制。而AI研究應當效仿人類的大腦系統(tǒng)。

這奠定了DeepMind的研究思路,人工智能就應該像人一樣學習和思考。這意味著,DeepMind堅信,神經(jīng)科學研究所找到的“大腦算法”可以被神經(jīng)網(wǎng)絡所參照和使用。反過來,這套機制在神經(jīng)網(wǎng)絡機制上的成功實踐,又反過來促進神經(jīng)科學的發(fā)展。

顯然,從MEMO的效果而言,模擬人腦神經(jīng)網(wǎng)絡機制的方法似乎可以作為通向AGI的一條通路,但這條路也絕不是坦途,比如眼前這道“因果關(guān)系推理”的巨大鴻溝。MEMO的提出,僅僅是在為跨越這道溝壑搭建出的一步重要的階梯。

在通向AGI的征途里,深度學習等技術(shù)還將持續(xù)進化,它需要先沿著“因果關(guān)系”的這道鴻溝向下,深入到人類因果性認知的各個低谷,比如跳躍式聯(lián)想、條件干預的因果預測、反事實推理等等,才有可能重新向上跨越鴻溝。

道阻且長,AGI的黎明不會很快到來。但正因為DeepMind這樣的AI研究機構(gòu)的努力,才能讓暗夜中探索的人們始終心懷火種。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉