在我的理解里,要實現(xiàn)計算機視覺必須有圖像處理的幫助,而圖像處理倚仗與模式識別的有效運用,而模式識別是人工智能領域的一個重要分支,人工智能與機器學習密不可分??v觀一切關系,發(fā)現(xiàn)計算機視覺的應用服務于機器學習。各個環(huán)節(jié)缺一不可,相輔相成。
計算機視覺(computer vision),用計算機來模擬人的視覺機理獲取和處理信息的能力。就是是指用攝影機和電腦代替人眼對目標進行識別、跟蹤和測量等機器視覺,并進一步做圖形處理,用電腦處理成為更適合人眼觀察或傳送給儀器檢測的圖像。計算機視覺研究相關的理論和技術,試圖建立能夠從圖像或者多維數(shù)據(jù)中獲取‘信息’的人工智能系統(tǒng)。計算機視覺的挑戰(zhàn)是要為計算機和機器人開發(fā)具有與人類水平相當?shù)囊曈X能力。機器視覺需要圖象信號,紋理和顏色建模,幾何處理和推理,以及物體建模。一個有能力的視覺系統(tǒng)應該把所有這些處理都緊密地集成在一起。
圖像處理(image processing),用計算機對圖像進行分析,以達到所需結果的技術。又稱影像處理?;緝热輬D像處理一般指數(shù)字圖像處理。數(shù)字圖像是指用數(shù)字攝像機、掃描儀等設備經過采樣和數(shù)字化得到的一個大的二維數(shù)組,該數(shù)組的元素稱為像素,其值為一整數(shù),稱為灰度值。圖像處理技術的主要內容包括圖像壓縮,增強和復原,匹配、描述和識別3個部分。常見的處理有圖像數(shù)字化、圖像編碼、圖像增強、圖像復原、圖像分割和圖像分析等。圖像處理一般指數(shù)字圖像處理。
模式識別(Pattern Recognition)是指對表征事物或現(xiàn)象的各種形式的(數(shù)值的、文字的和邏輯關系的)信息進行處理和分析,以對事物或現(xiàn)象進行描述、辨認、分類和解釋的過程,是信息科學和人工智能的重要組成部分。模式識別又常稱作模式分類,從處理問題的性質和解決問題的方法等角度,模式識別分為有監(jiān)督的分類(Supervised ClassificaTIon)和無監(jiān)督的分類(Unsupervised ClassificaTIon)兩種。模式還可分成抽象的和具體的兩種形式。前者如意識、思想、議論等,屬于概念識別研究的范疇,是人工智能的另一研究分支。我們所指的模式識別主要是對語音波形、地震波、心電圖、腦電圖、圖片、照片、文字、符號、生物傳感器等對象的具體模式進行辨識和分類。模式識別研究主要集中在兩方面,一是研究生物體(包括人)是如何感知對象的,屬于認識科學的范疇,二是在給定的任務下,如何用計算機實現(xiàn)模式識別的理論和方法。應用計算機對一組事件或過程進行辨識和分類,所識別的事件或過程可以是文字、聲音、圖像等具體對象,也可以是狀態(tài)、程度等抽象對象。這些對象與數(shù)字形式的信息相區(qū)別,稱為模式信息。模式識別與統(tǒng)計學、心理學、語言學、計算機科學、生物學、控制論等都有關系。它與人工智能、圖像處理的研究有交叉關系。
機器學習(Machine Learning)是研究計算機怎樣模擬或實現(xiàn)人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。它是人工智能的核心,是使計算機具有智能的根本途徑,其應用遍及人工智能的各個領域,它主要使用歸納、綜合而不是演繹。機器學習在人工智能的研究中具有十分重要的地位。一個不具有學習能力的智能系統(tǒng)難以稱得上是一個真正的智能系統(tǒng),但是以往的智能系統(tǒng)都普遍缺少學習的能力。隨著人工智能的深入發(fā)展,這些局限性表現(xiàn)得愈加突出。正是在這種情形下,機器學習逐漸成為人工智能研究的核心之一。它的應用已遍及人工智能的各個分支,如專家系統(tǒng)、自動推理、自然語言理解、模式識別、計算機視覺、智能機器人等領域。機器學習的研究是根據(jù)生理學、認知科學等對人類學習機理的了解,建立人類學習過程的計算模型或認識模型,發(fā)展各種學習理論和學習方法,研究通用的學習算法并進行理論上的分析,建立面向任務的具有特定應用的學習系統(tǒng)。這些研究目標相互影響相互促進。
人類研究計算機的目的,是為了提高社會生產力水平,提高生活質量,把人從單調復雜甚至危險的工作中解救出來。今天的計算機在計算速度上已經遠遠超過了人,然而在很多方面,特別是在人類智能活動有關的方面例如在視覺功能、聽覺功能、嗅覺功能、自然語言理解能力功能等等方面,還不如人。
這種現(xiàn)狀無法滿足一些高級應用的要求。例如,我們希望計算機能夠及早地發(fā)現(xiàn)路上的可疑情況并提醒汽車駕駛員以避免發(fā)生事故,我們更希望計算機能幫助我們進行自動駕駛,目前的技術還不足以滿足諸如此類高級應用的要求,還需要更多的人工智能研究成果和系統(tǒng)實現(xiàn)的經驗。