谷歌發(fā)布基于機(jī)器學(xué)習(xí)框架TensorFlow模塊 改善AI模型的隱私保護(hù)
掃描二維碼
隨時(shí)隨地手機(jī)看文章
編者按:在物聯(lián)網(wǎng)和AI時(shí)代,數(shù)據(jù)成為重要的決策和生產(chǎn)工具,但是如何保護(hù)個(gè)人數(shù)據(jù)不被濫用,是許多機(jī)構(gòu)和公民擔(dān)心的問(wèn)題。谷歌公司在基于機(jī)器學(xué)習(xí)框架TensorFlow的谷歌最新模塊,讓開(kāi)發(fā)者只添加幾行額外代碼就能改善AI模型中的隱私。這是開(kāi)發(fā)者的福音,但是具體的情況如何,要看開(kāi)發(fā)者使用后的反饋。微軟、谷歌一些公司都開(kāi)始對(duì)安全問(wèn)題高度重視。
基于機(jī)器學(xué)習(xí)框架TensorFlow的谷歌最新模塊,可以讓開(kāi)發(fā)者只添加幾行額外代碼就能改善AI模型中的隱私。TensorFlow是目前用于構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用程序最流行的工具之一,它被世界各地的開(kāi)發(fā)人員用于創(chuàng)建文本、音頻和圖像識(shí)別算法等程序。而伴隨著TensorFlow Privacy的引入,這些開(kāi)發(fā)人員能夠使用“差異隱私”的統(tǒng)計(jì)數(shù)據(jù)來(lái)保護(hù)用戶(hù)的數(shù)據(jù)。
谷歌產(chǎn)品經(jīng)理Carey Radebaugh向外媒The Verge透露,發(fā)布這款工具是谷歌履行對(duì)人工智能的承諾和愿景。他說(shuō)道:“如果我們沒(méi)有為T(mén)ensorFlow引入差異化隱私技術(shù),那么無(wú)論是團(tuán)隊(duì)內(nèi)部還是Google外部用戶(hù)在使用過(guò)程中就會(huì)發(fā)現(xiàn)有些不太簡(jiǎn)單。因此對(duì)于我們來(lái)說(shuō)將其引入TensorFlow是非常重要的,我們還將會(huì)對(duì)其進(jìn)行開(kāi)源,并開(kāi)始圍繞著它創(chuàng)建新的社區(qū)?!?/p>
差異隱私的機(jī)制有點(diǎn)復(fù)雜,但它本質(zhì)上是一種數(shù)學(xué)方法,這意味著用于培訓(xùn)AI模型的用戶(hù)數(shù)據(jù)并不能編碼個(gè)人可識(shí)別信息。這是在AI模型中保護(hù)個(gè)人信息的常用方法:蘋(píng)果在iOS 10上引入了自家的AI服務(wù)的,而Google在Gmail的Smart Reply等部分AI功能中也使用到了這項(xiàng)技術(shù)。
已經(jīng)在的數(shù)據(jù)隱私領(lǐng)域工作了20年的谷歌研究科學(xué)家úlfarErlingsson表示:差異化隱私技術(shù)以“數(shù)學(xué)確定性”消除了編碼個(gè)人數(shù)據(jù)的可能性,他表示這是一種從數(shù)據(jù)集中刪除可識(shí)別的異常值而不改變數(shù)據(jù)的聚合含義的技術(shù)。
谷歌的研究科學(xué)家úlfarErlingsson說(shuō),他已經(jīng)在數(shù)據(jù)隱私領(lǐng)域工作了20年。 Erlingsson告訴The Verge,這是一種從數(shù)據(jù)集中刪除可識(shí)別的異常值而不改變數(shù)據(jù)的聚合含義的技術(shù), “你的結(jié)果獨(dú)立于任何一個(gè)人的[數(shù)據(jù)],但這仍然是一個(gè)很好的結(jié)果?!?br />
本文來(lái)自CnBeta, 本文作為轉(zhuǎn)載分享。