www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 智能硬件 > 人工智能AI
[導讀]   今天,我們就為大家從技術(shù)上揭秘科大訊飛的新一代語音識別系統(tǒng)。   眾所周知,自2011年微軟研究院首次利用深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)在大規(guī)模語音

  今天,我們就為大家從技術(shù)上揭秘科大訊飛的新一代語音識別系統(tǒng)。

  眾所周知,自2011年微軟研究院首次利用深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)在大規(guī)模語音識別任務(wù)上獲得顯著效果提升以來,DNN在語音識別領(lǐng)域受到越來越多的關(guān)注,目前已經(jīng)成為主流語音識別系統(tǒng)的標配。然而,更深入的研究成果表明,DNN結(jié)構(gòu)雖然具有很強的分類能力,但是其針對上下文時序信息的捕捉能力是較弱的,因此并不適合處理具有長時相關(guān)性的時序信號。而語音是一種各幀之間具有很強相關(guān)性的復雜時變信號,這種相關(guān)性主要體現(xiàn)在說話時的協(xié)同發(fā)音現(xiàn)象上,往往前后好幾個字對我們正要說的字都有影響,也就是語音的各幀之間具有長時相關(guān)性。

  

  圖1:DNN和RNN示意圖

  相比前饋型神經(jīng)網(wǎng)絡(luò)DNN,循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network, RNN)在隱層上增加了一個反饋連接,也就是說,RNN隱層當前時刻的輸入有一部分是前一時刻的隱層輸出,這使得RNN可以通過循環(huán)反饋連接看到前面所有時刻的信息,這賦予了RNN記憶功能,如圖1所示。這些特點使得RNN非常適合用于對時序信號的建模,在語音識別領(lǐng)域,RNN是一個近年來替換DNN的新的深度學習框架,而長短時記憶模塊(Long-Short Term Memory, LSTM)的引入解決了傳統(tǒng)簡單RNN梯度消失等問題,使得RNN框架可以在語音識別領(lǐng)域?qū)嵱没@得了超越DNN的效果,目前已經(jīng)在業(yè)界一些比較先進的語音系統(tǒng)中使用。

  除此之外,研究人員還在RNN的基礎(chǔ)上做了進一步改進工作,圖2是當前語音識別中的主流RNN聲學模型框架,主要還包含兩部分:深層雙向LSTM RNN和CTC(ConnecTIonist Temporal ClassificaTIon)輸出層。其中雙向RNN對當前語音幀進行判斷時,不僅可以利用歷史的語音信息,還可以利用未來的語音信息,可以進行更加準確的決策;CTC使得訓練過程無需幀級別的標注,實現(xiàn)有效的“端對端”訓練。

  

  圖2:基于LSTM RNN的主流聲學模型框架

  目前,國際國內(nèi)已經(jīng)有不少學術(shù)或工業(yè)機構(gòu)掌握了RNN模型,并在上述某個或多個技術(shù)點進行研究。然而,上述各個技術(shù)點單獨研究時一般可以獲得較好的結(jié)果,但是如果想將這些技術(shù)點融合在一起的時候,則會碰到一些問題。例如,多個技術(shù)結(jié)合在一起的提升幅度會比各個技術(shù)點幅度的疊加要小。又例如,傳統(tǒng)的雙向RNN方案,理論上需要看到語音的結(jié)束(即所有的未來信息),才能成功的應用未來信息來獲得提升,因此只適合處理離線任務(wù),而對于要求即時響應的在線任務(wù)(例如語音輸入法)則往往會帶來3-5s的硬延遲,這對于在線任務(wù)是不可接受的。再者,RNN對上下文相關(guān)性的擬合較強,相對于DNN更容易陷入過擬合的問題,容易因為訓練數(shù)據(jù)的局部不魯棒現(xiàn)象而帶來額外的異常識別錯誤。最后,由于RNN具有比DNN更加復雜的結(jié)構(gòu),給海量數(shù)據(jù)下的RNN模型訓練帶來了更大的挑戰(zhàn)。

  鑒于上述問題,科大訊飛發(fā)明了一種名為前饋型序列記憶網(wǎng)絡(luò)FSMN(Feed-forward SequenTIal Memory Network)的新框架。在這個框架中,可以把上述幾點很好的融合,同時各個技術(shù)點對效果的提升可以獲得疊加。值得一提的是,我們在這個系統(tǒng)中創(chuàng)造性提出的FSMN結(jié)構(gòu),采用非循環(huán)的前饋結(jié)構(gòu),在只需要180ms延遲下,就達到了和雙向LSTM RNN相當?shù)男Ч?。下面讓我們來具體看下它的構(gòu)成。

  

  圖3:FSMN結(jié)構(gòu)示意圖

  

  圖4:FSMN中隱層記憶塊的時序展開示意圖(左右各看一幀)

  圖3即為FSMN的結(jié)構(gòu)示意圖,相比傳統(tǒng)的DNN,我們在隱層旁增加了一個稱為“記憶塊”的模塊,用于存儲對判斷當前語音幀有用的歷史信息和未來信息。圖4畫出了雙向FSMN中記憶塊左右各記憶一幀語音信息(在實際任務(wù)中,可根據(jù)任務(wù)需要,人工調(diào)整所需記憶的歷史和未來信息長度)的時序展開結(jié)構(gòu)。

  從圖中我們可以看出,不同于傳統(tǒng)的基于循環(huán)反饋的RNN,F(xiàn)SMN記憶塊的記憶功能是使用前饋結(jié)構(gòu)實現(xiàn)的。這種前饋結(jié)構(gòu)有兩大好處:首先,雙向FSMN對未來信息進行記憶時,沒有傳統(tǒng)雙向RNN必須等待語音輸入結(jié)束才能對當前語音幀進行判斷的限制,它只需要等待有限長度的未來語音幀即可,正如前文所說的,我們的雙向FSMN在將延遲控制在180ms的情況下就可獲得媲美雙向RNN的效果;其次,如前所述,傳統(tǒng)的簡單RNN因為訓練過程中的梯度是按時間逐次往前傳播的,因此會出現(xiàn)指數(shù)衰減的梯度消失現(xiàn)象,這導致理論上具有無限長記憶的RNN實際上能記住的信息很有限,然而FSMN這種基于前饋時序展開結(jié)構(gòu)的記憶網(wǎng)絡(luò),在訓練過程中梯度沿著圖4中記憶塊與隱層的連接權(quán)重往回傳給各個時刻即可,這些連接權(quán)重決定了不同時刻輸入對判斷當前語音幀的影響,而且這種梯度傳播在任何時刻的衰減都是常數(shù)的,也是可訓練的,因此FSMN用一種更為簡單的方式解決了RNN中的梯度消失問題,使得其具有類似LSTM的長時記憶能力。

  另外,在模型訓練效率和穩(wěn)定性方面,由于FSMN完全基于前饋神經(jīng)網(wǎng)絡(luò),所以不存在RNN訓練中因mini-batch中句子長短不一需要補零而導致浪費運算的情況,前饋結(jié)構(gòu)也使得它的并行度更高,可最大化利用GPU計算能力。從最終訓練收斂的雙向FSMN模型記憶塊中各時刻的加權(quán)系數(shù)分布我們觀察到,權(quán)重值基本上在當前時刻最大,往左右兩邊逐漸衰減,這也符合預期。進一步,F(xiàn)SMN可和CTC準則結(jié)合,實現(xiàn)語音識別中的“端到端”建模。

  最后,和其他多個技術(shù)點結(jié)合后,訊飛基于FSMN的語音識別框架可獲得相比業(yè)界最好的語音識別系統(tǒng)40%的性能提升,同時結(jié)合我們的多GPU并行加速技術(shù),訓練效率可達到一萬小時訓練數(shù)據(jù)一天可訓練收斂。后續(xù)基于FSMN框架,我們還將展開更多相關(guān)的研究工作,例如:DNN和記憶塊更深層次的組合方式,增加記憶塊部分復雜度強化記憶功能,F(xiàn)SMN結(jié)構(gòu)和CNN等其他結(jié)構(gòu)的更深度融合等。在這些核心技術(shù)持續(xù)進步的基礎(chǔ)上,科大訊飛的語音識別系統(tǒng)將不斷挑戰(zhàn)新的高峰!

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉