www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 公眾號精選 > 21ic電子網(wǎng)
[導(dǎo)讀]Python 是一種腳本語言,相比 C/C++ 這樣的編譯語言,在效率和性能方面存在一些不足。但是,有很多時候,Python 的效率并沒有想象中的那么夸張。本文對一些 Python 代碼加速運行的技巧進(jìn)行整理。 0. 代碼優(yōu)化原則 本文會介紹不少的 Python 代碼加速運行的技巧


Python 是一種腳本語言,相比 C/C++ 這樣的編譯語言,在效率和性能方面存在一些不足。但是,有很多時候,Python 的效率并沒有想象中的那么夸張。本文對一些 Python 代碼加速運行的技巧進(jìn)行整理。

0. 代碼優(yōu)化原則

本文會介紹不少的 Python 代碼加速運行的技巧。在深入代碼優(yōu)化細(xì)節(jié)之前,需要了解一些代碼優(yōu)化基本原則。

第一個基本原則是不要過早優(yōu)化。很多人一開始寫代碼就奔著性能優(yōu)化的目標(biāo),“讓正確的程序更快要比讓快速的程序正確容易得多”。因此,優(yōu)化的前提是代碼能正常工作。過早地進(jìn)行優(yōu)化可能會忽視對總體性能指標(biāo)的把握,在得到全局結(jié)果前不要主次顛倒。

第二個基本原則是權(quán)衡優(yōu)化的代價。優(yōu)化是有代價的,想解決所有性能的問題是幾乎不可能的。通常面臨的選擇是時間換空間或空間換時間。另外,開發(fā)代價也需要考慮。

第三個原則是不要優(yōu)化那些無關(guān)緊要的部分。如果對代碼的每一部分都去優(yōu)化,這些修改會使代碼難以閱讀和理解。如果你的代碼運行速度很慢,首先要找到代碼運行慢的位置,通常是內(nèi)部循環(huán),專注于運行慢的地方進(jìn)行優(yōu)化。在其他地方,一點時間上的損失沒有什么影響。

1. 避免全局變量

# 不推薦寫法。代碼耗時:26.8秒 import math

size = 10000 for x in range(size): for y in range(size):
        z = math.sqrt(x) + math.sqrt(y)

許多程序員剛開始會用 Python 語言寫一些簡單的腳本,當(dāng)編寫腳本時,通常習(xí)慣了直接將其寫為全局變量,例如上面的代碼。但是,由于全局變量和局部變量實現(xiàn)方式不同,定義在全局范圍內(nèi)的代碼運行速度會比定義在函數(shù)中的慢不少。通過將腳本語句放入到函數(shù)中,通常可帶來 15% - 30% 的速度提升。

# 推薦寫法。代碼耗時:20.6秒 import math

def main(): # 定義到函數(shù)中,以減少全部變量使用 size = 10000 for x in range(size): for y in range(size):
            z = math.sqrt(x) + math.sqrt(y)

main()

2. 避免.(屬性訪問操作符)

2.1 避免模塊和函數(shù)屬性訪問

# 不推薦寫法。代碼耗時:14.5秒 import math

def computeSqrt(size: int):
    result = [] for i in range(size):
        result.append(math.sqrt(i)) return result

def main():
    size = 10000 for _ in range(size):
        result = computeSqrt(size)

main()

每次使用.(屬性訪問操作符時)會觸發(fā)特定的方法,如__getattribute__()和__getattr__(),這些方法會進(jìn)行字典操作,因此會帶來額外的時間開銷。通過from import語句,可以消除屬性訪問。

# 第一次優(yōu)化寫法。代碼耗時:10.9秒 from math import sqrt

def computeSqrt(size: int):
    result = [] for i in range(size):
        result.append(sqrt(i)) # 避免math.sqrt的使用 return result

def main():
    size = 10000 for _ in range(size):
        result = computeSqrt(size)

main()

在第 1 節(jié)中我們講到,局部變量的查找會比全局變量更快,因此對于頻繁訪問的變量sqrt,通過將其改為局部變量可以加速運行。

# 第二次優(yōu)化寫法。代碼耗時:9.9秒 import math

def computeSqrt(size: int):
    result = []
    sqrt = math.sqrt # 賦值給局部變量 for i in range(size):
        result.append(sqrt(i)) # 避免math.sqrt的使用 return result

def main():
    size = 10000 for _ in range(size):
        result = computeSqrt(size)

main()

除了math.sqrt外,computeSqrt函數(shù)中還有.的存在,那就是調(diào)用list的append方法。通過將該方法賦值給一個局部變量,可以徹底消除computeSqrt函數(shù)中for循環(huán)內(nèi)部的.使用。

# 推薦寫法。代碼耗時:7.9秒 import math

def computeSqrt(size: int):
    result = []
    append = result.append
    sqrt = math.sqrt # 賦值給局部變量 for i in range(size):
        append(sqrt(i)) # 避免 result.append 和 math.sqrt 的使用 return result

def main():
    size = 10000 for _ in range(size):
        result = computeSqrt(size)

main()

2.2 避免類內(nèi)屬性訪問

# 不推薦寫法。代碼耗時:10.4秒 import math
from typing import List

class DemoClass:
    def __init__(self, value: int):
        self._value = value
    
    def computeSqrt(self, size: int) -> List[float]:
        result = []
        append = result.append
        sqrt = math.sqrt for _ in range(size):
            append(sqrt(self._value)) return result

def main():
    size = 10000 for _ in range(size):
        demo_instance = DemoClass(size)
        result = demo_instance.computeSqrt(size)

main()

避免.的原則也適用于類內(nèi)屬性,訪問self._value的速度會比訪問一個局部變量更慢一些。通過將需要頻繁訪問的類內(nèi)屬性賦值給一個局部變量,可以提升代碼運行速度。

# 推薦寫法。代碼耗時:8.0秒 import math
from typing import List

class DemoClass:
    def __init__(self, value: int):
        self._value = value
    
    def computeSqrt(self, size: int) -> List[float]:
        result = []
        append = result.append
        sqrt = math.sqrt
        value = self._value for _ in range(size):
            append(sqrt(value)) # 避免 self._value 的使用 return result

def main():
    size = 10000 for _ in range(size):
        demo_instance = DemoClass(size)
        demo_instance.computeSqrt(size)

main()

3. 避免不必要的抽象

# 不推薦寫法,代碼耗時:0.55秒 class DemoClass:
    def __init__(self, value: int):
        self.value = value

    @property
    def value(self) -> int: return self._value

    @value.setter
    def value(self, x: int):
        self._value = x

def main():
    size = 1000000 for i in range(size):
        demo_instance = DemoClass(size)
        value = demo_instance.value
        demo_instance.value = i

main()

任何時候當(dāng)你使用額外的處理層(比如裝飾器、屬性訪問、描述器)去包裝代碼時,都會讓代碼變慢。大部分情況下,需要重新進(jìn)行審視使用屬性訪問器的定義是否有必要,使用getter/setter函數(shù)對屬性進(jìn)行訪問通常是 C/C++ 程序員遺留下來的代碼風(fēng)格。如果真的沒有必要,就使用簡單屬性。

# 推薦寫法,代碼耗時:0.33秒 class DemoClass:
    def __init__(self, value: int):
        self.value = value # 避免不必要的屬性訪問器 def main():
    size = 1000000 for i in range(size):
        demo_instance = DemoClass(size)
        value = demo_instance.value
        demo_instance.value = i

main()

4. 避免數(shù)據(jù)復(fù)制

4.1 避免無意義的數(shù)據(jù)復(fù)制

# 不推薦寫法,代碼耗時:6.5秒 def main():
    size = 10000 for _ in range(size):
        value = range(size)
        value_list = [x for x in value]
        square_list = [x * x for x in value_list]

main()

上面的代碼中value_list完全沒有必要,這會創(chuàng)建不必要的數(shù)據(jù)結(jié)構(gòu)或復(fù)制。

# 推薦寫法,代碼耗時:4.8秒 def main():
    size = 10000 for _ in range(size):
        value = range(size)
        square_list = [x * x for x in value] # 避免無意義的復(fù)制 main()

另外一種情況是對 Python 的數(shù)據(jù)共享機制過于偏執(zhí),并沒有很好地理解或信任 Python 的內(nèi)存模型,濫用 copy.deepcopy()之類的函數(shù)。通常在這些代碼中是可以去掉復(fù)制操作的。

4.2 交換值時不使用中間變量

# 不推薦寫法,代碼耗時:0.07秒 def main():
    size = 1000000 for _ in range(size):
        a = 3
        b = 5
        temp = a
        a = b
        b = temp

main()

上面的代碼在交換值時創(chuàng)建了一個臨時變量temp,如果不借助中間變量,代碼更為簡潔、且運行速度更快。

# 推薦寫法,代碼耗時:0.06秒 def main():
    size = 1000000 for _ in range(size):
        a = 3
        b = 5
        a, b = b, a # 不借助中間變量 main()

4.3 字符串拼接用join而不是+

# 不推薦寫法,代碼耗時:2.6秒 import string
from typing import List

def concatString(string_list: List[str]) -> str:
    result = '' for str_i in string_list:
        result += str_i return result

def main():
    string_list = list(string.ascii_letters * 100) for _ in range(10000):
        result = concatString(string_list)

main()

當(dāng)使用a + b拼接字符串時,由于 Python 中字符串是不可變對象,其會申請一塊內(nèi)存空間,將a和b分別復(fù)制到該新申請的內(nèi)存空間中。因此,如果要拼接  個字符串,會產(chǎn)生  個中間結(jié)果,每產(chǎn)生一個中間結(jié)果都需要申請和復(fù)制一次內(nèi)存,嚴(yán)重影響運行效率。而使用join()拼接字符串時,會首先計算出需要申請的總的內(nèi)存空間,然后一次性地申請所需內(nèi)存,并將每個字符串元素復(fù)制到該內(nèi)存中去。

# 推薦寫法,代碼耗時:0.3秒 import string
from typing import List

def concatString(string_list: List[str]) -> str: return ''.join(string_list) # 使用 join 而不是 + def main():
    string_list = list(string.ascii_letters * 100) for _ in range(10000):
        result = concatString(string_list)

main()

5. 利用if條件的短路特性

# 不推薦寫法,代碼耗時:0.05秒 from typing import List

def concatString(string_list: List[str]) -> str:
    abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}
    abbr_count = 0
    result = '' for str_i in string_list: if str_i in abbreviations:
            result += str_i return result

def main(): for _ in range(10000):
        string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']
        result = concatString(string_list)

main()

if 條件的短路特性是指對if a and b這樣的語句, 當(dāng)a為False時將直接返回,不再計算b;對于if a or b這樣的語句,當(dāng)a為True時將直接返回,不再計算b。因此, 為了節(jié)約運行時間,對于or語句,應(yīng)該將值為True可能性比較高的變量寫在or前,而and應(yīng)該推后。

# 推薦寫法,代碼耗時:0.03秒 from typing import List

def concatString(string_list: List[str]) -> str:
    abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}
    abbr_count = 0
    result = '' for str_i in string_list: if str_i[-1] == '.' and str_i in abbreviations: # 利用 if 條件的短路特性 result += str_i return result

def main(): for _ in range(10000):
        string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']
        result = concatString(string_list)

main()

6. 循環(huán)優(yōu)化

6.1 用for循環(huán)代替while循環(huán)

# 不推薦寫法。代碼耗時:6.7秒 def computeSum(size: int) -> int:
    sum_ = 0
    i = 0 while i < size: sum_ += i i += 1 return sum_

def main():
    size = 10000 for _ in range(size):
        sum_ = computeSum(size)

main()

Python 的for循環(huán)比while循環(huán)快不少。

# 推薦寫法。代碼耗時:4.3秒 def computeSum(size: int) -> int:
    sum_ = 0 for i in range(size): # for 循環(huán)代替 while 循環(huán) sum_ += i return sum_

def main():
    size = 10000 for _ in range(size):
        sum_ = computeSum(size)

main()

6.2 使用隱式for循環(huán)代替顯式for循環(huán)

針對上面的例子,更進(jìn)一步可以用隱式for循環(huán)來替代顯式for循環(huán)

# 推薦寫法。代碼耗時:1.7秒 def computeSum(size: int) -> int: return sum(range(size)) # 隱式 for 循環(huán)代替顯式 for 循環(huán) def main():
    size = 10000 for _ in range(size):
        sum = computeSum(size)

main()

6.3 減少內(nèi)層for循環(huán)的計算

# 不推薦寫法。代碼耗時:12.8秒 import math

def main():
    size = 10000
    sqrt = math.sqrt for x in range(size): for y in range(size):
            z = sqrt(x) + sqrt(y)

main()

上面的代碼中sqrt(x)位于內(nèi)側(cè)for循環(huán), 每次訓(xùn)練過程中都會重新計算一次,增加了時間開銷。

# 推薦寫法。代碼耗時:7.0秒 import math

def main():
    size = 10000
    sqrt = math.sqrt for x in range(size):
        sqrt_x = sqrt(x) # 減少內(nèi)層 for 循環(huán)的計算 for y in range(size):
            z = sqrt_x + sqrt(y)

main()

7. 使用numba.jit

我們沿用上面介紹過的例子,在此基礎(chǔ)上使用numba.jit。numba可以將 Python 函數(shù) JIT 編譯為機器碼執(zhí)行,大大提高代碼運行速度。關(guān)于numba的更多信息見下面的主頁:

http://numba.pydata.org/numba.pydata.org

# 推薦寫法。代碼耗時:0.62秒 import numba

@numba.jit
def computeSum(size: float) -> int:
    sum = 0 for i in range(size):
        sum += i return sum

def main():
    size = 10000 for _ in range(size):
        sum = computeSum(size)

main()

8. 選擇合適的數(shù)據(jù)結(jié)構(gòu)

Python 內(nèi)置的數(shù)據(jù)結(jié)構(gòu)如str, tuple, list, set, dict底層都是 C 實現(xiàn)的,速度非???,自己實現(xiàn)新的數(shù)據(jù)結(jié)構(gòu)想在性能上達(dá)到內(nèi)置的速度幾乎是不可能的。

list類似于 C++ 中的std::vector,是一種動態(tài)數(shù)組。其會預(yù)分配一定內(nèi)存空間,當(dāng)預(yù)分配的內(nèi)存空間用完,又繼續(xù)向其中添加元素時,會申請一塊更大的內(nèi)存空間,然后將原有的所有元素都復(fù)制過去,之后銷毀之前的內(nèi)存空間,再插入新元素。刪除元素時操作類似,當(dāng)已使用內(nèi)存空間比預(yù)分配內(nèi)存空間的一半還少時,會另外申請一塊小內(nèi)存,做一次元素復(fù)制,之后銷毀原有大內(nèi)存空間。因此,如果有頻繁的新增、刪除操作,新增、刪除的元素數(shù)量又很多時,list的效率不高。此時,應(yīng)該考慮使用collections.deque。collections.deque是雙端隊列,同時具備棧和隊列的特性,能夠在兩端進(jìn)行  復(fù)雜度的插入和刪除操作。

list的查找操作也非常耗時。當(dāng)需要在list頻繁查找某些元素,或頻繁有序訪問這些元素時,可以使用bisect維護(hù)list對象有序并在其中進(jìn)行二分查找,提升查找的效率。

另外一個常見需求是查找極小值或極大值,此時可以使用heapq模塊將list轉(zhuǎn)化為一個堆,使得獲取最小值的時間復(fù)雜度是  。

下面的網(wǎng)頁給出了常用的 Python 數(shù)據(jù)結(jié)構(gòu)的各項操作的時間復(fù)雜度:

TimeComplexity - Python Wikiwiki.python.org


來源:http://suo.im/5Ee6jm

免責(zé)聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺僅提供信息存儲服務(wù)。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!

21ic電子網(wǎng)

掃描二維碼,關(guān)注更多精彩內(nèi)容

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉