用于監(jiān)控負(fù)軌的電路,此電路和所有使用此拓?fù)涞碾娐返撵`感來自電流鏡拓?fù)浜透拍?,?Rsense 中的變化電流以及 Rsense 兩端的電壓會改變 Re2 中的電流,因此 Rc1 兩端的電壓呈線性變化時尚。
電源系統(tǒng)設(shè)計工程師經(jīng)常問我,您如何提供雙極(正負(fù))電壓軌,同時將成本和復(fù)雜性降至最低?同時,應(yīng)該如何應(yīng)對各種挑戰(zhàn)——從電流隔離和廣泛的輸入電壓到小型解決方案尺寸和電磁兼容性 (EMC)?例如,考慮工業(yè)通信應(yīng)用中的樓宇和工廠自動化、測試和測量設(shè)備以及隔離式 RS-485 和 CAN 收發(fā)器。
全差分放大器 (FDA)是一種多用途的工具,它可以替代balun(或與它一同使用)的同時,并且提供多種優(yōu)點。與傳統(tǒng)的使用單端輸出的放大器相比,電路設(shè)計人員在使用由FDA實現(xiàn)的全差分信號處理頻譜分析儀時,能夠增加電路對外部噪聲的抗擾度,從而將動態(tài)范圍加倍,并且減少偶次諧波。
第一個運算放大器(op amps) 使用通常稱為分離式電源的東西,這意味著放大器的電源在接地周圍對稱,具有正極性和負(fù)極性。由于大多數(shù)電源使用變壓器來轉(zhuǎn)換 120 V 市電,因此一個簡單的中心抽頭次級繞組可以輕松接入負(fù)電源。
傳統(tǒng)升壓 PFC 相比,無橋 PFC 消除了橋式整流器和橋式整流器的功率損耗。對于400W 電源,在 120VAC/60Hz 輸入下,橋式整流器的功率損耗高達(dá) 6W。由于橋式整流器的功耗,效率降低了1.5% ,這清楚地說明了為什么人們在有高效率要求時會考慮無橋 PFC。
LLC 諧振轉(zhuǎn)換器的基本電路如下所述。LLC 諧振轉(zhuǎn)換器一般包含一個帶mosfet的控制器、一個諧振網(wǎng)絡(luò)和一個整流器網(wǎng)絡(luò)。控制器以50%的占空比交替為兩個mosfet提供門信號,隨負(fù)載變化而改變工作頻率,調(diào)節(jié)輸出電壓vout,這稱為脈沖頻率調(diào)制(pfm)。諧振網(wǎng)絡(luò)包括兩個諧振電感和一個諧振電容(LLC )。諧振電感 lr、lm 與諧振電容cr 主要作為一個分壓器,其阻抗隨工作頻率而變化(如式1所示),以獲得所需的輸出電壓。
以太網(wǎng)供電PoE (Power over Ethernet) 是指在現(xiàn)有的以太網(wǎng)布線基礎(chǔ)架構(gòu)下, 除了能夠保證為基于以太網(wǎng)的終端設(shè)備(如IP 電話機(jī)、無線局域網(wǎng)接入點A P、安全網(wǎng)絡(luò)攝像機(jī)等) 傳輸數(shù)據(jù)信號的同時, 不作任何改動就同時可以為此類設(shè)備提供直流供電的能力。PoE 系統(tǒng)主要包括供電設(shè)備( Power SourceEquipment, PSE) 和用電設(shè)備(Powered Device, PD)兩部分, 兩者基于IEEE2802.3af 標(biāo)準(zhǔn)確定有關(guān)用電設(shè)備PD 的連接情況、設(shè)備類型、功耗級別等信息聯(lián)系, 并以這些信息為根據(jù)控制供電設(shè)備PSE 通過以太網(wǎng)級向用電設(shè)備PD 供電。
我介紹了帶有標(biāo)準(zhǔn) PFC 控制器的半無橋 PFC 作為低成本、高效率 PFC 的候選者。由于效率要求不斷增長,許多電源制造商開始將注意力轉(zhuǎn)向無橋功率因數(shù)校正(PFC)拓?fù)浣Y(jié)構(gòu)。一般而言,無橋PFC可以通過減少線路電流路徑中半導(dǎo)體元器件的數(shù)目來降低傳導(dǎo)損耗。盡管無橋PFC的概念已經(jīng)提出了許多年,但因其實施難度和控制復(fù)雜程度,阻礙了它成為一種主流拓?fù)洹1疚闹攸c介紹具有模擬轉(zhuǎn)換模式 PFC 控制器的半無橋 PFC 的關(guān)鍵設(shè)計注意事項。
處理器中功耗的表達(dá)式為P f*V 2。隨著系統(tǒng)時鐘頻率越來越高,接近被稱為超頻的狀態(tài),效率受到影響,熱量成為設(shè)計人員的主要關(guān)注點。處理器產(chǎn)生的過多熱量會導(dǎo)致熱關(guān)機(jī)、系統(tǒng)電源循環(huán)和/或永久性損壞,最終會縮短處理器的使用壽命。
電流模式控制(CMC)是一種非常流行的直流-直流轉(zhuǎn)換器回路架構(gòu),這是有充分理由的。簡單的操作和動態(tài)可以實現(xiàn),即使有兩個循環(huán),一個寬帶電流循環(huán)潛伏在一個外部電壓回路內(nèi),是必需的。峰值,山谷,平均,滯后,常數(shù)準(zhǔn)時,常數(shù)關(guān)閉時間和模擬電流模式。每一種技術(shù)都提供與有關(guān)的優(yōu)點整體設(shè)計。
濾波在幾乎所有通信系統(tǒng)中都扮演著重要的角色,因為去除噪聲和失真會增加信道容量。設(shè)計一個只通過所需頻率的濾波器是相當(dāng)容易的。然而,在實際的物理濾波器實現(xiàn)中,通過濾波器會損失所需的信號功率。這種信號損失會為模數(shù)轉(zhuǎn)換器(ADC) 噪聲系數(shù)貢獻(xiàn)分貝。
您是否正在尋找具有可調(diào)節(jié)輸出電壓的高性價比大電流線性穩(wěn)壓器解決方案?使用具有 1.2 伏固定輸出電壓 ( TLV1117LV12 ) 的具有成本效益的線性穩(wěn)壓器(例如行業(yè)標(biāo)準(zhǔn) 1117)創(chuàng)建簡單的設(shè)計。
在高端電信應(yīng)用中,我們經(jīng)常面臨跨大型印刷電路板 (PCB) 供電的挑戰(zhàn)。為了給關(guān)鍵的 ASIC 和處理器提供寶貴的空間,電源通常被分配到電路板的角落或邊緣。為了補(bǔ)償電源路徑的電阻下降,通常使用遠(yuǎn)程感應(yīng)——特別是對于低壓、大電流應(yīng)用。負(fù)載的動態(tài)特性,加上電源路徑的寄生電阻,可能會影響電源的運行,如果不注意的話。以下是使用遠(yuǎn)程電源時避免陷阱的 3 種方法:
許多控制回路應(yīng)用要求您避免與輸入相關(guān)的意外極性反轉(zhuǎn)。這是因為如果一個階段的輸出以意想不到的方式改變極性,控制回路的響應(yīng)會導(dǎo)致系統(tǒng)不穩(wěn)定。在這篇文章中,我將研究這個問題并提出一種簡單的方法來避免它在電路中出現(xiàn)。
EMI 就像夜深人靜的幽靈一樣,不正常。但是,盡管與 EMI 相關(guān)的問題正在增加,但仍有一些方法可以在您的設(shè)計中避免它們。