在這篇文章中,小編將為大家?guī)韮煽?a href="/tags/MOSFET" target="_blank">MOSFET驅動電路設計。如果你對本文即將要講解的內容存在一定興趣,不妨繼續(xù)往下閱讀哦。
一、驅動電路
驅動電路的基本任務,就是將信息電子電路傳來的信號按照其控制目標的要求,轉換為加在電力電子器件控制端和公共端之間,可以使其開通或關斷的信號。對半控型器件只需提供開通控制信號,對全控型器件則既要提供開通控制信號,又要提供關斷控制信號,以保證器件按要求可靠導通或關斷。
驅動電路隔離技術一般使用光電耦合器或隔離變壓器(光耦合;磁耦合)。 由于 MOSFET 的工作頻率及輸入阻抗高,容易被干擾,故驅動電路應具有良好的電氣隔離性能,以實現主電路與控制電路之間的隔離,使之具有較強的抗干擾能力,避免功率級電路對控制信號的干擾。
二、電源模塊中常見的兩款MOSFET驅動電路
1:電源IC直接驅動MOSFET
圖 1 IC直接驅動MOSFET
電源IC直接驅動是我們最常用的驅動方式,同時也是最簡單的驅動方式,使用這種驅動方式,應該注意幾個參數以及這些參數的影響。第一,查看一下電源IC手冊,其最大驅動峰值電流,因為不同芯片,驅動能力很多時候是不一樣的。第二,了解一下MOSFET的寄生電容,如圖 1中C1、C2的值。如果C1、C2的值比較大,MOS管導通的需要的能量就比較大,如果電源IC沒有比較大的驅動峰值電流,那么管子導通的速度就比較慢。如果驅動能力不足,上升沿可能出現高頻振蕩,即使把圖 1中Rg減小,也不能解決問題! IC驅動能力、MOS寄生電容大小、MOS管開關速度等因素,都影響驅動電阻阻值的選擇,所以Rg并不能無限減小。
2:電源IC驅動能力不足時
如果選擇MOS管寄生電容比較大,電源IC內部的驅動能力又不足時,需要在驅動電路上增強驅動能力,常使用圖騰柱電路增加電源IC驅動能力,其電路如圖 2虛線框所示。
圖 2 圖騰柱驅動MOS
這種驅動電路作用在于,提升電流提供能力,迅速完成對于柵極輸入電容電荷的充電過程。這種拓撲增加了導通所需要的時間,但是減少了關斷時間,開關管能快速開通且避免上升沿的高頻振蕩。
以上就是小編這次想要和大家分享的內容,希望大家對本次分享的內容已經具有一定的了解。如果您想要看不同類別的文章,可以在網頁頂部選擇相應的頻道哦。