www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 模擬 > 模擬
[導讀]隨著能源價格的上漲和各項“環(huán)保”計劃的成功開展,私營公司和政府監(jiān)管部門對電源制造商的要求逐漸提高。歐盟委員會(歐盟(EU)的執(zhí)行機構(gòu))和美國環(huán)境保護署(EPA)對服務(wù)器電源的要求進一步升級,現(xiàn)已涵蓋各種

隨著能源價格的上漲和各項“環(huán)保”計劃的成功開展,私營公司和政府監(jiān)管部門對電源制造商的要求逐漸提高。歐盟委員會(歐盟(EU)的執(zhí)行機構(gòu))和美國環(huán)境保護署(EPA)對服務(wù)器電源的要求進一步升級,現(xiàn)已涵蓋各種負載級別的效率以及待機功耗。服務(wù)器集群運營商也對電源制造商提出了類似要求。

由于法規(guī)如此嚴格,并且還有許多法規(guī)即將出臺,電源制造商正逐漸轉(zhuǎn)向數(shù)字控制。在全數(shù)字解決方案中,完全可編程的數(shù)字信號控制器(Digital Signal Controller,DSC)可直接生成用于控制功率電路級的PWM信號。同時,控制器還能處理系統(tǒng)管理任務(wù),例如數(shù)據(jù)記錄、通信和故障報告。這樣,電源設(shè)計人員可以在DSC中編寫高級控制方法,而在模擬設(shè)計中,這即便可以實現(xiàn)也是極為困難的。設(shè)計人員可利用此功能靈活地實現(xiàn)最終客戶所需的數(shù)據(jù)記錄和通信標準。

相移全橋(Phase-Shifted Full-Bridge,PSFB)拓撲是一種有潛力滿足未來電源效率需求的直流-直流轉(zhuǎn)換器。DSC的靈活性使得不穩(wěn)定的PSFB拓撲更易于管理,并可實現(xiàn)進一步提高PSFB效率的先進技術(shù)。

移相全橋拓撲的必然性

下面我們將討論高頻工作所必需的簡單全橋拓撲,然后討論效率提高策略。

全橋轉(zhuǎn)換器

如圖1所示,全橋轉(zhuǎn)換器使用四個開關(guān)(Q1、Q2、Q3和Q4)進行配置。對角開關(guān)Q1、Q4和Q2、Q3同時導通時,將在變壓器的初級繞組上提供完整的輸入電壓(VIN)。在轉(zhuǎn)換器每半個周期中,對角開關(guān)Q1和Q4或Q2和Q3導通,并且變壓器的極性會在每半個周期中反轉(zhuǎn)。在全橋轉(zhuǎn)換器中,給定功率下的開關(guān)電流和初級電流與半橋轉(zhuǎn)換器相比將減半。這種電流減少使得全橋轉(zhuǎn)換器適用于高功率等級。但是,對角的開關(guān)采用硬開關(guān),當其導通和關(guān)斷時會導致較高的開關(guān)損耗。

過去,由于合適的控制器尚未出現(xiàn),電源工程師不得不使用效率較低的硬開關(guān)電源轉(zhuǎn)換方法。這些方法的損耗隨頻率的增加而增加,因而限制了工作頻率,進而限制了電源高效供電的能力。

圖1:全橋轉(zhuǎn)換器

軟開關(guān)全橋(PSFB)拓撲

利用現(xiàn)有DSC,設(shè)計人員現(xiàn)在可考慮使用更高的工作頻率來減少電源中磁性元件和濾波電容的數(shù)量。頻率的升高會導致硬開關(guān)電源轉(zhuǎn)換器(例如傳統(tǒng)全橋轉(zhuǎn)換器)中產(chǎn)生更高的開關(guān)損耗。一種較好的替代方案是選擇相對復雜的軟開關(guān)方法來減少開關(guān)損耗并提供較高的功率密度。

PSFB轉(zhuǎn)換器是一種軟開關(guān)拓撲,使用寄生電容(例如MOSFET和IGBT等開關(guān)器件的輸出電容)和變壓器的漏電感來實現(xiàn)諧振轉(zhuǎn)換。這種諧振轉(zhuǎn)換可以使開關(guān)器件在接通時兩端電壓為零,從而消除其接通時的開關(guān)損耗。

PSFB轉(zhuǎn)換器已廣泛用于轉(zhuǎn)換器的功率密度和頻率至關(guān)重要的電信和服務(wù)器應(yīng)用中。PSFB轉(zhuǎn)換器的常規(guī)工作在許多文章中都有介紹,我們將在此基礎(chǔ)上展示DSC如何進一步提高性能。

圖2:相移全橋轉(zhuǎn)換器

帶傳統(tǒng)同步MOSFET柵極驅(qū)動的相移全橋轉(zhuǎn)換器

為確保用戶安全以及符合監(jiān)管機構(gòu)制定的規(guī)則,大多數(shù)直流-直流轉(zhuǎn)換器設(shè)計有隔離變壓器。額定值較高的電源在初級設(shè)計有PSFB拓撲,在次級設(shè)計有全波同步整流器,以實現(xiàn)較高效率。

在PSFB轉(zhuǎn)換器中,如果使用傳統(tǒng)方法控制的同步MOSFET配置,則MOSFET的Q1、Q3或Q2、Q4應(yīng)處于導通狀態(tài)。此時,沒有任何功率從初級傳輸?shù)酱渭?,并且MOSFET Q5仍處于導通狀態(tài)。

由于轉(zhuǎn)換器的次級側(cè)存在電感(Lo),因此輸出電感中的能量在MOSFET Q5和變壓器(Tx)的次級線圈之間循環(huán)。電流會通過MOSFET的通道或通過MOSFET的內(nèi)部二級管持續(xù)流經(jīng)變壓器次級線圈。由于電流會從次級反射到初級,所以在初級的零狀態(tài)(初級到次級無任何能量傳輸)期間將存在環(huán)流,這會導致轉(zhuǎn)換器中出現(xiàn)損耗。與額定輸入電壓的情況相比,這些環(huán)流損耗在較高的電壓下尤其明顯。此外,為避免跨導,在Q5和Q6 MOSFET柵極驅(qū)動之間有意地引入一個死區(qū)。在此期間,任何同步MOSFET均不會導通。因此,電流將流經(jīng)MOSFET內(nèi)部二極管。與MOSFET的Rds(ON)相比,這些MOSFET內(nèi)部二極管具有高正向壓降,即(VF * I)》(I2rms*Rds(on))。

通過疊加柵極驅(qū)動信號,可防止傳統(tǒng)的同步柵極驅(qū)動中產(chǎn)生較高損耗,這將在下一部分中介紹。

圖3:同步MOSFET柵極驅(qū)動的傳統(tǒng)配置

同步MOSFET柵極驅(qū)動信號的疊加

通過疊加同步MOSFET的PWM柵極驅(qū)動信號,可避免在變壓器初級側(cè)的零狀態(tài)期間發(fā)生損耗。這將在以下三個方面提高電源效率。

首先,在中心分接的全波整流器中,疊加同步MOSFET的柵極驅(qū)動信號將消除變壓器次級中心分接線圈中的磁通,這樣在變壓器次級和初級之間實際上不會有磁通。

其次,兩個同步MOSFET和兩個變壓器中心分接線圈同時導通,而不是一個同步MOSFET和一個中心分接變壓器導通。因此,次級電流將只有一半的有效電阻,與只有一個同步MOSFET導通的情況相比,損耗會降低一半。

圖4:疊加同步MOSFET柵極驅(qū)動信號以提高效率

最后,在傳統(tǒng)的開關(guān)方法中,有意引入的死區(qū)可能為開關(guān)周期的10%,并且在該死區(qū)期間,高次級電流將流經(jīng)MOSFET的高正向壓降內(nèi)部二極管。通過配置同步MOSFET的PWM柵極驅(qū)動信號疊加,高次級電流可流經(jīng)MOSFET通道。在這種情況下,將只有Rds(ON)損耗,其與死區(qū)中MOSFET內(nèi)部二極管導致的損耗相比非常小。對于具有電信輸入(36至76 VDC)的系統(tǒng),通過疊加同步MOSFET柵極驅(qū)動信號,直流-直流轉(zhuǎn)換器的效率將提高3 - 4%.

實現(xiàn)這些技術(shù)需要靈活的具有完全獨立PWM輸出的電源控制器。DSC(例如dsPIC DSC)提供了靈活性以及PWM外設(shè),可輕松實現(xiàn)此技術(shù)和其他效率提升技術(shù)。

結(jié)論

PSFB拓撲具有實現(xiàn)現(xiàn)代電源所需效率的潛力。數(shù)字控制使設(shè)計人員能夠非常精確地控制PSFB拓撲和實現(xiàn)高級控制技術(shù)(例如疊加同步MOSFET)。新拓撲、新技術(shù)及新理念正在推動電源進入二十一世紀。數(shù)字控制器(例如Microchip的dsPIC DSC)已經(jīng)為未來的電源需求做好了準備。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

中國上海,2025年9月10日——全球知名半導體制造商羅姆(總部位于日本京都市)與德國大型汽車零部件供應(yīng)商舍弗勒集團(總部位于德國赫爾佐根奧拉赫,以下簡稱“舍弗勒”)宣布,作為戰(zhàn)略合作伙伴關(guān)系的重要里程碑,舍弗勒開始量產(chǎn)...

關(guān)鍵字: SiC MOSFET 電動汽車

2025年9月4日,致力于亞太地區(qū)市場的國際領(lǐng)先半導體元器件分銷商---大聯(lián)大控股宣布,其旗下品佳推出基于英飛凌(Infineon)2.5kW PFC評估板的空調(diào)電源方案。

關(guān)鍵字: 功率開關(guān) 空調(diào)電源 柵極驅(qū)動

-三款新器件助力提升工業(yè)設(shè)備的效率和功率密度-

關(guān)鍵字: SiC MOSFET 開關(guān)電源

在電子系統(tǒng)中,MOSFET(金屬氧化物半導體場效應(yīng)晶體管)作為一種常用的開關(guān)器件,其開關(guān)過程中的電磁干擾(EMI)問題備受關(guān)注。

關(guān)鍵字: MOSFET

【2025年8月1日,德國慕尼黑訊】全球功率系統(tǒng)和物聯(lián)網(wǎng)領(lǐng)域的半導體領(lǐng)導者英飛凌科技股份公司(FSE代碼:IFX / OTCQX代碼:IFNNY)近日推出了采用頂部散熱(TSC)Q-DPAK封裝的CoolSiC? MOS...

關(guān)鍵字: MOSFET 電動汽車 伏逆變器

7月18日,由魯歐智造(山東)數(shù)字科技有限公司主辦、中關(guān)村集成電路設(shè)計園、北航確信可靠性聯(lián)合實驗室協(xié)辦的第三屆用戶大會在北京朗麗茲西山花園酒店成功舉辦。本次大會以“開啟電子熱管理技術(shù)圈的正向設(shè)計之門”為主題,吸引了來自全...

關(guān)鍵字: SiC MOSFET 功率半導體

在數(shù)據(jù)中心、5G基站和電動汽車充電等高可靠性電力電子系統(tǒng)中,多電源模塊并聯(lián)運行已成為提升系統(tǒng)容量和冗余度的核心架構(gòu)。據(jù)統(tǒng)計,全球并聯(lián)電源市場規(guī)模預(yù)計2025年將突破85億美元,其中均流精度和動態(tài)響應(yīng)成為區(qū)分技術(shù)方案的關(guān)鍵...

關(guān)鍵字: 多輸出電源 數(shù)字控制

許多電源轉(zhuǎn)換應(yīng)用都需要支持寬輸入或輸出電壓范圍。ADI公司的一款大電流、高效率、全集成式四開關(guān)降壓-升壓型電源模塊可以滿足此類應(yīng)用的需求。該款器件將控制器、MOSFET、功率電感和電容集成到先進的3D集成封裝中,實現(xiàn)了緊...

關(guān)鍵字: 穩(wěn)壓器 控制器 MOSFET

在電力電子系統(tǒng)中,MOSFET(金屬氧化物半導體場效應(yīng)晶體管)作為核心開關(guān)器件,其可靠性直接影響系統(tǒng)壽命。據(jù)統(tǒng)計,功率器件失效案例中,MOSFET占比超過40%,主要失效模式包括雪崩擊穿、熱失控、柵極氧化層擊穿等。本文從...

關(guān)鍵字: MOSFET 電力電子系統(tǒng)

在數(shù)據(jù)中心直流供電系統(tǒng)向高密度、高頻化演進的進程中,碳化硅(SiC)MOSFET憑借其低導通電阻、高頻開關(guān)特性及高溫穩(wěn)定性,成為替代傳統(tǒng)硅基IGBT和MOSFET的核心器件。然而,其高速開關(guān)過程中產(chǎn)生的直流電磁干擾(EM...

關(guān)鍵字: 碳化硅 MOSFET 直流EMI
關(guān)閉