一個更復雜的例子我們用一個較為復雜的例子來說明如何使用這種技術。圖6a為一個較復雜的形狀,計算它的電阻需要費點工夫。這個例子里,我們假設條件是25℃下銅箔重量為1oz.,電流方向是沿走線的整個長度,從A點到B點。A端和B端都放有連接器。采用前述的相同技術,我們可把復雜形狀分解為一系列方塊,如圖6b所示。這些方塊可以是任何適宜的尺寸,可用不同尺寸的方塊來填充整個感興趣的區(qū)域。只要我們有一個正方塊,并知道銅走線的重量,就能知道電阻值。我們共有六個完全正方塊,兩個包括連接器的正方塊,還有三個拐角方塊。由于1oz.銅箔的電阻為0.5mΩ/方塊,并且電流線性地流過六個全方塊,這些方塊的總電阻為:6×0.5mΩ=3mΩ。然后,我們要加上兩個有連接器的方塊,每個按0.14個方塊計算(圖5c)。因此,兩個連接器算0.28個方塊(2×0.14)。對于1oz.銅箔,這增加了0.14mΩ的電阻(0.28×0.5mΩ=0.14mΩ)。最后,加上三個拐角方塊。每個按0.56個方塊計算,總共為3×0.56×0.5mΩ=0.84mΩ。因此,從A到B的總電阻為3.98mΩ(3mΩ+0.14mΩ+0.84mΩ)。總結如下:●六個為1的全正方形=6個等效方塊;兩個為0.14的連接器方塊=0.28個等效方塊;三個為0.56的角方塊=1.68個等效方塊●總等效方塊數(shù)=7.96個等效方塊●電阻(A到B)=7.96個方塊的電阻,因每方塊為0.5mΩ,于是總電阻=3.98mΩ這一技術可以方便地應用至復雜的幾何形狀。一旦知道了某根走線的電阻值,想算其它量(如電壓降或功耗等)就很簡單了。過孔怎么算?印刷通常都不限于單層,而是以不同層的方式堆疊起來。過孔用于不同層之間的走線連接。每個過孔的電阻有限,在走線總電阻計算時必須將過孔的電阻考慮在內(nèi)。一般而言,當過孔連接兩根走線(或平面)時,它就構成了一個串聯(lián)電阻元件。經(jīng)常采用多個并聯(lián)過孔的方法,以降低有效電阻。過孔電阻的計算基于圖7所示的簡化過孔幾何形狀。沿著過孔長度(L)方向的電流(如箭頭所指)穿過一個截面積區(qū)域(A)。厚度(t)取決于過孔內(nèi)壁電鍍的銅層厚度。經(jīng)過一些簡單的代數(shù)變換,過孔電阻可表示為R=ρL/[π(Dt-t2)],其中,ρ是鍍銅的電阻率(25℃下為2.36μΩ/in.)。注意,鍍銅的電阻率遠高于純銅的電阻率。我們假設,過孔中鍍層的厚度t一般為1mil,它與的銅箔重量無關。對于一個10層板,層厚為3.5mil,銅重量為2oz.時,L大約為63mil。基于上述假設,表3給出了常見過孔尺寸及其電阻。我們可以針對自身特殊的板厚,調(diào)整這些數(shù)值的高低。另外,網(wǎng)上也有許多免費易用的過孔計算程序。以上就是一種估算印刷走線或平面直流電阻的簡單方法。復雜的幾何形狀可以分解成多個不同尺寸的銅方塊,以近似于整個銅箔區(qū)。一旦確定了銅箔的重量,則任何尺寸方塊的電阻值就都是已知量了。這樣,估算過程就簡化為單純的銅方塊數(shù)量統(tǒng)計。